Menu

Chat Completions

Last updated January 15, 2026

Create chat completions using various AI models available through the AI Gateway.

Endpoint
POST /chat/completions

Create a non-streaming chat completion.

Example request
chat-completion.ts
import OpenAI from 'openai';
 
const apiKey = process.env.AI_GATEWAY_API_KEY || process.env.VERCEL_OIDC_TOKEN;
 
const openai = new OpenAI({
  apiKey,
  baseURL: 'https://ai-gateway.vercel.sh/v1',
});
 
const completion = await openai.chat.completions.create({
  model: 'anthropic/claude-sonnet-4.5',
  messages: [
    {
      role: 'user',
      content: 'Write a one-sentence bedtime story about a unicorn.',
    },
  ],
  stream: false,
});
 
console.log('Assistant:', completion.choices[0].message.content);
console.log('Tokens used:', completion.usage);
chat-completion.py
import os
from openai import OpenAI
 
api_key = os.getenv('AI_GATEWAY_API_KEY') or os.getenv('VERCEL_OIDC_TOKEN')
 
client = OpenAI(
    api_key=api_key,
    base_url='https://ai-gateway.vercel.sh/v1'
)
 
completion = client.chat.completions.create(
    model='anthropic/claude-sonnet-4.5',
    messages=[
        {
            'role': 'user',
            'content': 'Write a one-sentence bedtime story about a unicorn.'
        }
    ],
    stream=False,
)
 
print('Assistant:', completion.choices[0].message.content)
print('Tokens used:', completion.usage)
Response format
{
  "id": "chatcmpl-123",
  "object": "chat.completion",
  "created": 1677652288,
  "model": "anthropic/claude-sonnet-4.5",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "Once upon a time, a gentle unicorn with a shimmering silver mane danced through moonlit clouds, sprinkling stardust dreams upon sleeping children below."
      },
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 15,
    "completion_tokens": 28,
    "total_tokens": 43
  }
}

Create a streaming chat completion that streams tokens as they are generated.

Example request
streaming-chat.ts
import OpenAI from 'openai';
 
const apiKey = process.env.AI_GATEWAY_API_KEY || process.env.VERCEL_OIDC_TOKEN;
 
const openai = new OpenAI({
  apiKey,
  baseURL: 'https://ai-gateway.vercel.sh/v1',
});
 
const stream = await openai.chat.completions.create({
  model: 'anthropic/claude-sonnet-4.5',
  messages: [
    {
      role: 'user',
      content: 'Write a one-sentence bedtime story about a unicorn.',
    },
  ],
  stream: true,
});
 
for await (const chunk of stream) {
  const content = chunk.choices[0]?.delta?.content;
  if (content) {
    process.stdout.write(content);
  }
}
streaming-chat.py
import os
from openai import OpenAI
 
api_key = os.getenv('AI_GATEWAY_API_KEY') or os.getenv('VERCEL_OIDC_TOKEN')
 
client = OpenAI(
    api_key=api_key,
    base_url='https://ai-gateway.vercel.sh/v1'
)
 
stream = client.chat.completions.create(
    model='anthropic/claude-sonnet-4.5',
    messages=[
        {
            'role': 'user',
            'content': 'Write a one-sentence bedtime story about a unicorn.'
        }
    ],
    stream=True,
)
 
for chunk in stream:
    content = chunk.choices[0].delta.content
    if content:
        print(content, end='', flush=True)

Streaming responses are sent as Server-Sent Events (SSE), a web standard for real-time data streaming over HTTP. Each event contains a JSON object with the partial response data.

The response format follows the OpenAI streaming specification:

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"anthropic/claude-sonnet-4.5","choices":[{"index":0,"delta":{"content":"Once"},"finish_reason":null}]}
 
data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"anthropic/claude-sonnet-4.5","choices":[{"index":0,"delta":{"content":" upon"},"finish_reason":null}]}
 
data: [DONE]

Key characteristics:

  • Each line starts with data: followed by JSON
  • Content is delivered incrementally in the delta.content field
  • The stream ends with data: [DONE]
  • Empty lines separate events

SSE Parsing Libraries:

If you're building custom SSE parsing (instead of using the OpenAI SDK), these libraries can help:

For more details about the SSE specification, see the W3C specification.

Send images as part of your chat completion request.

Example request
image-analysis.ts
import fs from 'node:fs';
import OpenAI from 'openai';
 
const apiKey = process.env.AI_GATEWAY_API_KEY || process.env.VERCEL_OIDC_TOKEN;
 
const openai = new OpenAI({
  apiKey,
  baseURL: 'https://ai-gateway.vercel.sh/v1',
});
 
// Read the image file as base64
const imageBuffer = fs.readFileSync('./path/to/image.png');
const imageBase64 = imageBuffer.toString('base64');
 
const completion = await openai.chat.completions.create({
  model: 'anthropic/claude-sonnet-4.5',
  messages: [
    {
      role: 'user',
      content: [
        { type: 'text', text: 'Describe this image in detail.' },
        {
          type: 'image_url',
          image_url: {
            url: `data:image/png;base64,${imageBase64}`,
            detail: 'auto',
          },
        },
      ],
    },
  ],
  stream: false,
});
 
console.log('Assistant:', completion.choices[0].message.content);
console.log('Tokens used:', completion.usage);
image-analysis.py
import os
import base64
from openai import OpenAI
 
api_key = os.getenv('AI_GATEWAY_API_KEY') or os.getenv('VERCEL_OIDC_TOKEN')
 
client = OpenAI(
    api_key=api_key,
    base_url='https://ai-gateway.vercel.sh/v1'
)
 
# Read the image file as base64
with open('./path/to/image.png', 'rb') as image_file:
    image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
 
completion = client.chat.completions.create(
    model='anthropic/claude-sonnet-4.5',
    messages=[
        {
            'role': 'user',
            'content': [
                {'type': 'text', 'text': 'Describe this image in detail.'},
                {
                    'type': 'image_url',
                    'image_url': {
                        'url': f'data:image/png;base64,{image_base64}',
                        'detail': 'auto'
                    }
                }
            ]
        }
    ],
    stream=False,
)
 
print('Assistant:', completion.choices[0].message.content)
print('Tokens used:', completion.usage)

Send PDF documents as part of your chat completion request.

Example request
pdf-analysis.ts
import fs from 'node:fs';
import OpenAI from 'openai';
 
const apiKey = process.env.AI_GATEWAY_API_KEY || process.env.VERCEL_OIDC_TOKEN;
 
const openai = new OpenAI({
  apiKey,
  baseURL: 'https://ai-gateway.vercel.sh/v1',
});
 
// Read the PDF file as base64
const pdfBuffer = fs.readFileSync('./path/to/document.pdf');
const pdfBase64 = pdfBuffer.toString('base64');
 
const completion = await openai.chat.completions.create({
  model: 'anthropic/claude-sonnet-4.5',
  messages: [
    {
      role: 'user',
      content: [
        {
          type: 'text',
          text: 'What is the main topic of this document? Please summarize the key points.',
        },
        {
          type: 'file',
          file: {
            data: pdfBase64,
            media_type: 'application/pdf',
            filename: 'document.pdf',
          },
        },
      ],
    },
  ],
  stream: false,
});
 
console.log('Assistant:', completion.choices[0].message.content);
console.log('Tokens used:', completion.usage);
pdf-analysis.py
import os
import base64
from openai import OpenAI
 
api_key = os.getenv('AI_GATEWAY_API_KEY') or os.getenv('VERCEL_OIDC_TOKEN')
 
client = OpenAI(
    api_key=api_key,
    base_url='https://ai-gateway.vercel.sh/v1'
)
 
# Read the PDF file as base64
with open('./path/to/document.pdf', 'rb') as pdf_file:
    pdf_base64 = base64.b64encode(pdf_file.read()).decode('utf-8')
 
completion = client.chat.completions.create(
    model='anthropic/claude-sonnet-4.5',
    messages=[
        {
            'role': 'user',
            'content': [
                {
                    'type': 'text',
                    'text': 'What is the main topic of this document? Please summarize the key points.'
                },
                {
                    'type': 'file',
                    'file': {
                        'data': pdf_base64,
                        'media_type': 'application/pdf',
                        'filename': 'document.pdf'
                    }
                }
            ]
        }
    ],
    stream=False,
)
 
print('Assistant:', completion.choices[0].message.content)
print('Tokens used:', completion.usage)

The chat completions endpoint supports the following parameters:

  • model (string): The model to use for the completion (e.g., anthropic/claude-sonnet-4)
  • messages (array): Array of message objects with role and content fields
  • stream (boolean): Whether to stream the response. Defaults to false
  • temperature (number): Controls randomness in the output. Range: 0-2
  • max_tokens (integer): Maximum number of tokens to generate
  • top_p (number): Nucleus sampling parameter. Range: 0-1
  • frequency_penalty (number): Penalty for frequent tokens. Range: -2 to 2
  • presence_penalty (number): Penalty for present tokens. Range: -2 to 2
  • stop (string or array): Stop sequences for the generation
  • tools (array): Array of tool definitions for function calling
  • tool_choice (string or object): Controls which tools are called (auto, none, or specific function)
  • providerOptions (object): Provider routing and configuration options
  • response_format (object): Controls the format of the model's response
    • For OpenAI standard format: { type: "json_schema", json_schema: { name, schema, strict?, description? } }
    • For legacy format: { type: "json", schema?, name?, description? }
    • For plain text: { type: "text" }
    • See Structured outputs for detailed examples

Messages support different content types:

{
  "role": "user",
  "content": "Hello, how are you?"
}
{
  "role": "user",
  "content": [
    { "type": "text", "text": "What's in this image?" },
    {
      "type": "image_url",
      "image_url": {
        "url": "..."
      }
    }
  ]
}
{
  "role": "user",
  "content": [
    { "type": "text", "text": "Summarize this document" },
    {
      "type": "file",
      "file": {
        "data": "JVBERi0xLjQKJcfsj6IKNSAwIG9iago8PAovVHlwZSAvUGFnZQo...",
        "media_type": "application/pdf",
        "filename": "document.pdf"
      }
    }
  ]
}

Was this helpful?

supported.