LlamaIndex

LlamaIndex makes it simple to build knowledge assistants using LLMs connected to your enterprise data. This guide demonstrates how to integrate Vercel AI Gateway with LlamaIndex to access various AI models and providers.

  1. First, create a new directory for your project and initialize it:

    terminal
    mkdir llamaindex-ai-gateway
    cd llamaindex-ai-gateway
  2. Install the required LlamaIndex packages along with the python-dotenv package:

    terminal
    pip install llama-index-llms-vercel-ai-gateway llama-index python-dotenv
  3. Create a .env file with your Vercel AI Gateway API key:

    .env
    AI_GATEWAY_API_KEY=your-api-key-here

    If you're using the AI Gateway from within a Vercel deployment, you can also use the VERCEL_OIDC_TOKEN environment variable which will be automatically provided.

  4. Create a new file called main.py with the following code:

    main.py
    from dotenv import load_dotenv
    from llama_index.llms.vercel_ai_gateway import VercelAIGateway
    from llama_index.core.llms import ChatMessage
    import os
     
    load_dotenv()
     
    llm = VercelAIGateway(
        api_key=os.getenv("AI_GATEWAY_API_KEY"),
        max_tokens=200000,
        context_window=64000,
        model="anthropic/claude-4-sonnet",
    )
     
    message = ChatMessage(role="user", content="Tell me a story in 250 words")
    resp = llm.stream_chat([message])
    for r in resp:
        print(r.delta, end="")

    The following code:

    • Initializes a VercelAIGateway LLM instance with your API key
    • Configures the model to use Anthropic's Claude 4 Sonnet via the AI Gateway
    • Creates a chat message and streams the response
  5. Run your application using Python:

    terminal
    python main.py

    You should see a streaming response from the AI model.

Last updated on August 18, 2025